

Calculus 120 Unit 1: Rate of Change and Derivatives

February 20, 2018: Day #10

- 1. Test on Thursday
- 2. Assignment Due
- 3. Return Quiz
- **3.** Page 105-106 #13, 14, 15, 16, 21, 22, 26a

Curriculum Outcomes

- **C1.** Explore the concepts of average and instantaneous rate of change.
- **C2.** Determine the derivative of a function by applying the definition of derivative.

Ex: Determine the values of x for which the following functions are not differentiable? Provide reasoning.

$$y = \frac{1}{x - 2}$$

X:2 Vertical Asymptote

$$y = (x-1)^{\frac{2}{3}}$$

$$y = 2\sqrt{x+5} - 2$$

What are the 5 types of situations where a relation is not differentiable?

- 1. POD
- 2. Endpoints

- 3. Corners
 4. Cusps V
 S. Vertical Tangents -

For the graph below:

- a) Over which intervals is f(x) differentiable $\left(-\frac{15}{12}\right) \cup \left(-\frac{2}{12}\right)$
- b) Where is f(x) continuous, but not differentiable? 🗶 🗬

For the graph below:

- a) Over which intervals is f(x) differentiable $(-0.7) \cup (-3.3) \cup (3.4)$ b) Where is f(x) continuous, but not differentiable? Now

Test Review:

AROC slope =
$$\frac{f(x) - f(x_0)}{x_1 - x_0}$$

(ROC (not with decimals...only using derivatives)

Equation of a tangent line at a point

Equation of a normal line at a point

Derivative/IROC at a point
$$\int_{x\to a}^{\lim \frac{f(x)-f(a)}{x-a}}$$

Definition of a derivative $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$

Graphing f from f' and vice-versa

Differentiability of functions

Easy Word Problem

Practice

Page 114-115 #5, 7, 9, 11-16 (Differentiability)

Review: Red book

p. 59 #9, 10

p. 61 #2

p. 112 #1, 3, 10, 11

p. 115 #1

Attachments

2.1_74_AP.html

2.1_74_AP.swf

2.1_74_AP.html